Quantum Mechanics [

Week 2 (Solutions)

Spring Semester 2025

1 Matrix Diagonalization

Find the eigenvalues and the normalized eigenvectors of the following matrices.

The objective of this exercise is to determine the eigenvalues and eigenvectors of the
following square matrices. For a matrix A, the eigenvalues are obtained by solving the

characteristic equation
det(A— A1) =0. (1.1)

Once this is achieved, we then determine the corresponding eigenvectors. For the
eigenvalues «;, we solve the equation

Avi = uU;, (12)

with the condition that the eigenvector v; must be normalized, i.e. v]v; = 1. For a 2 x 2
matrix, like A;, the above takes the form of

1 0 ri\ _ (T 2 2 _
(0 _1> (y) —az(yi), 22+ Jyl2 = 1, (1.3)

where (z; y;)T corresponds to the eigenvector v;.

We provide the eigenvalues and normalized eigenvectors for the following matrices:

(a) A= ((1) —01>

The eigenvalues of A; are equal to \y = 1 and A = —1. The corresponding
eigenvectors are given by v, = (1 O)T and vy = (O 1)T.

0 1
The eigenvalues of Ay are equal to Ay = 1 and A = —1. The corresponding

eigenvectors are given by v, = \/Li(l l)T and vy = \%(1 —1)T.

(c) As = (—OZi 22L)

The eigenvalues of As are equal to Ay = +2. The corresponding eigenvectors are
given by vy = \/Li(l ZFZ')T.
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The eigenvalues of A4 are equal to A\ = 0, s = +1,A\3 = —1. Their respective
eigenvectors are: vy, = \%(—1 0 1)T,v2 = %(1 V2 ].)T,'Ug = %(1 -2 l)T.

(d) A=

Remark: The following matrices share the form with physical observables that we
frequently encounter in quantum mechanics. Keep these examples in mind for the
future. Try to identify them during the course.

2 Hermitian Operators

In the lecture we have seen that Hermitian operators play an important role in quantum
mechanics, as they are associated with physical observables. In the following, you will
prove some important properties of these operators.

(a) Show that for two Hermitian operators we have that
A AT A
(AB) — BrA, (2.1)
Hint: Consider the matrix elements of AB.

~ A\ T
We consider the matrix elements of the matrix (AB) , and the action of the

conjugate transpose operation on these elements:

LHS = ((AB)");; = ((AB);))" .

Then, using the definition of the matrix-matrix multiplication (AB);; = ), A B;j,
we may write:

LHS = (Z AjkB,ﬂ) => BpA;,.
k k

In the latter, we change the order of the matrix elements since they are simply
numbers. Using the property of the conjugate transpose operation, we write:

LHS = Z By = Z(BT)ik(AT)kj = (BTA"),;,
k k

where in the last equality we used the definition of the matrix-matrix multiplication.

(b) Show that the following operators are Hermitian:

(2.2)
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Using the result from Question (a) and (A")" = A, we find:

(ATA)T = At(aht = AtA
(AAT)T: (AT)TAT:ATA7
A4+ ANT At A

2 2

A—ANT At —aht A Al
2 =2 2%

Show that if H is Hermitian, then AHA" and ATHA are also Hermitian.
Using the relations from Question (b), we find:
(AHAN = (HANTAT = (AN HTAT = AR AT,
(ATHA)T = (HA)T(AN)T = ATHTA.
Using that H = H' we can conclude that both AHA" and ATHA are Hermitian.

Show that any generic operator C can be expressed as a linear combination of two
Hermitian operators, R and I, as

~

C'=R+il. (2.3)

Taking the adjoint of the general operator C, we find:

Ct=Rt —ilt = R—il, (2.4)

since both fi, I are Hermitian operators. We may now express the operators ]:Z,f in
terms of the generic operator C' and its adjoint C'T as follows:

T _
_Ctct _c-ct (25)

R
2 7 21

Using our results from Question (b), we verify that indeed R and I are Hermitian,
and thus it is possible to express any operator as C' = R 4 1.
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3 Commutators

During this course, we will frequently encounter commutators of two operators, both
Hermitian and non-Hermitian. This information is vital towards solving a quantum
mechanical problem or identifying possible symmetries of a system.

Using the definition of the commutator of two operators [fl, B] = AB — BA, show that:

e [AB,C] = A[B,C]+[A,C|B

~

o [A, [B,CA'H + [f?, [C,AH + [é’, A, BH = 0 (Jacobi identity)

[A,[B,C)] + [B,[C, A]] + [C, [A, B]] = A(BC — CB) — (BC — CB)A
B(CA— AC) — (CA— AC)B
C(AB — BA) — (AB — BA)C' =0

where A, B and C' are operators (matrices), and A is a scalar.

4 Pauli Matrices Algebra

The Pauli matrices are complex matrices that arise in the treatment of spin in quantum

mechanics,
0 1 0 —i 1 0
01 = (1 0) s 09 = (Z 0 ) , 03 = <O _1) . (41)

We will be using them frequently throughout this course, so it is essential to be comfortable
with them and to understand their properties.

(a) Show that the Pauli matrices are Hermitian.

A Hermitian matrix is a (complex) square matrix that is equal to its own conjugate
transpose. We need to show this for all Pauli matrices.
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(b) Show that

[l NV}
I
Q
[\l o}
I
Q
W N
I
H
—~
N
)
S—

where 1 is the identity matrix.

This is trivially shown by taking the square of matrices:

= (0) (o) = 1) =2 o
=00 ()60
=656 %)=6 )

1.

(¢) Show the following identity:

0i0; = 10;; + i€;,0%, (4.4)

where the Levi-Civita tensor is defined as:

1, (ijk) € {(123),(231), (312)}
ejr =< —1, (ijk) e {(132),(213), (321)} (4.5)

0, otherwise.

To show this result, we need to compute the product between Pauli matrices. We
have already shown that if we take the square of any Pauli matrix, we get the
identity matrix. The products between different Pauli matrices are:

(01 (0 =i\ (i 0 _ .
192 =11 0) \i o) " \o —i) ="
/(0 O
0'20'3—@. - _ZO =101,

~\ (1 0
0) \o -1
(1 0 (01 [0 1\ .
71 =10 -1)°\1 o) " \-10) "

1
We may also easily verify that o901 = —0109 = —i03, 0309 = —0903 = —i0; and
0103 = —o301 = —i0y. Collecting all the results from this Question, we prove that

07;(7]' = 15” + iEijkO'k; .
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Using your result from Question (c), show that:
(04, 0;] = 2i€;,0%. (4.6)
We expand the commutator as follows
loi,0/] = 0,0, — 0;0;.
Using the result of Question (c), we find
(04, 05] = 16;; + €10k — 15, — i€j;0% -

Using the fact that the Kronecker delta is symmetric under index exchange, d;; = d;;,
and that the Levi-Civita tensor is antisymmetric under the exchange of any pair of
indices, eg €;;, = —€;ix, we find

[O’i, O’j] :%—F iEiijk —%—F iEiijk = QiEiJkO'k .

Using your results from Question (c), show that:
{oi,0;} = 20;; . (4.7)
We expand the anticommutator as follows
{0i,0;} =0i0;+0j0;.
Using the result of Question (c), we find
{0i,0;} = 16i; + ieijnon + 165 + i€jin0y, .

Using the fact that the Kronecker delta is symmetric under index exchange, d;; = d;;,
and that the Levi-Civita tensor is antisymmetric under the exchange of any pair of
indices, eg €5 = —€;ix, we find

{oi, 05} = 1645 + deijor, + 105 — ieswor = 2045 .

Show that for any two vectors a and g, we have

- —

(G-a@)G-b)y=a-b+ic-(axb), (4.8)

where 6 = 01 + 0927 + 032.

Write the LHS in terms of the matrix elements:

-

Rearrange and we find
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LHS = O'iO'jaZ‘bj = (161] + ieijkak)aibj (410)

Using the properties of the delta function d;;a,b; = a;b; and the definition of the

-

cross product (@ X b); = €;,a;by

-

LHS = O'iO'j(Zibj = Clibi + ZUk(C_i X b)k (411)
which proves the final result.

Show that the eigenvalues, for a 2 x 2 Hermitian matrix ¢ with zero trace and

0? =1, are +1.
011 012
o= .
021 022

For a Hermitian matrix o, we must have real 011, 092 and 015 = 03;. The zero trace
of o yields 011 + 099 = 0 = 017 = —099. Using these results, the matrix form of o

reads 8
«a
= (5 %)

where o = 011 € R and 8 = 015 € C. The remaining condition 0% = 1 yields

We consider a general matrix o

la? + B =1. (4.12)

Let us now proceed to the diagonalization of o. The characteristic equation for the
eigenvalues \ is found

(—a=A(a=A) =8,

which simply reduces to A\? = |a|?> + |3]* = 1 (using Eq. (4.12)). From this final
result, we find the eigenvalues to be Ay = +1.

As an alternative solution, we can note that any Hermitian matrix M such that its
square M? is equal to the identity must have eigenvalues equal to +1 or —1, even
if the matrix is not 2 x 2 but lives in a space of higher dimension. Indeed, any
Hermitian matrix is diagonalizable and has real eigenvalues. If |v) is an eigenvector
with eigenvalue A then M|v) = AJv) and M?jv) = M(Mv)) = A?|v) = |v). This
implies A> = 1. Thus the eigenvalues are all either +1 or -1.

The trace of a Hermitian matrix is always equal to the sum of its eigenvalues. Thus

for a 2 x 2 matrix with trace zero, the only possibility is that one eigenvalue is +1
and the other is —1.

For each of the Pauli matrices, find its eigenvalues A and normalized eigenvectors
|vz-i>, where ¢ =1, 2, 3.

All the Pauli matrices are 2x2 Hermitian matrices with zero trace and 2 = 1. Thus,
using the result from the previous Question, their eigenvalues are /\fE = 41,1 €
{1,2,3}. The eigenvectors are determined as usual:
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o) w-g(l)
o) = % (1) NEYE % (_12) (4.14)

o) = ((1)) vy ) = <(1)> (4.15)

(i) The expectation value of a Hermitian matrix M with respect to (w.r.t.) a normalized

vector |v) is defined as:
M, = (v|M|v) (4.16)

Compute:

e The expectation value of o3 w.r.t. its eigenvectors ‘Ugi>

e The expectation value of o3 w.r.t. the eigenvectors of oy, 212i>
e The expectation value of o9 w.r.t. its eigenvectors of |v§[>
The expectation value is computed in matrix form as follows:
My My --- U1

M, = (v|M]v) = (v wv}---)| Mar My -+ | [ 02

Thus, for the cases provided we find:

o (vf|os|vy) =1, (v5|os|vs) =—1
o (vf|os|vy) =0, {vy|os|vs) =0
o (vf|o2|vs) =1, {vy|oa|vy ) = —1

(j) Later in the course, we will see the importance of the exponential of a matrix,
defined by the series:

M= Z M (4.17)

To make yourself more familiar with this object, compute:

exp(iaos), exp(iaos). (4.18)
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The exponential of a matrix is defined by its series. We compute ¢**3:

: = (iao3)" iacy  a’o:  ia’oios
o3 __ =1 — — cee =
‘ nz:% nl T 2l 3 "
o2 . 0B
B R T

=cosal + isinaos =

In the first to second line, we used the property ¢ = 1, and from second to third
line, we used the Taylor expansions of the sine and cosine.

eiaog _ i (iaO-Z)n =1+ 1009 . 0520'% _ ia30302 _
2yl 1 2 3)
o’ : o?
R P A

=cosal + isinaoy =
[ cosa  sina
—sinoa cosa )’

(k) Finally, we would like to understand how the exponential of a matrix acts on vectors.
Apply exp(iaos) to ‘vg > and decompose the result into a linear combination of ’v3i>
That is, find the coefficients ¢4 in the following expansion:

exp(iaos) [v]) = cy [v]) + e |v). (4.19)

Use the orthonormality of the eigenvectors for the above. Do the same with the
following:

e exp(iaoy) applied to ‘U; > and decomposed into ’v§[>

e exp(iaos) applied to ‘vg > and decomposed into |v§>

e exp(iaoy) applied to ‘v; > and decomposed into |v3i>
We use our result from the previous Question, in particular:

oy 1oy

e cosal +isinaoz, e cosal + isin aos .

For the first case, we simply have:

€% |v3 ) = cosar|vy ) +isina vy ) = e |v) .
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For the second case:

zaag

‘v3>—cosoz‘v3>—zsmoz’v3>—e O‘|v3_> .

The third and final case requires the action of an operator on an eigenvector of a
different operator. Thus, we express the target vector in the basis of o5:

15) = = [ ) + 1) .

Then, the action of €*°2 can be carried out:
%[— |U§r>+|v;>] = --~:sina|v§r>+cosa‘v3_> ,

where in the last equality we returned back to the original basis of 3. You may
verify that in all of the above cases, the resulting states remain normalized.

Show that if A and B are two operators such that [A, E] = ¢ then e*4ABe 4 =
B + cu.

The question can be solved by two different methods. Solution 1. First, note that if
[A, B] = c, then [A2, B] = A[A, B]+(A, B]JA = 2cA, [A%, B] = A[A%, B]+[A, B]A? =
3cA%.. In general, the relation [A", B] = A[A"! B] +[A, BJA" = A[A"' B] +
cA™1 can be used to prove by induction that [A” B] = ncA"!. Using this result
we can see that

. .n i n An—1 * n An—1 > n—1 fn—1
eA B - cng" A" cx" AV cx" AV 4
e Bl=2 0 =2 _Zm—l)!_fcz n—1)r
n=0 n=1 n=1 n=1
(4.20)
Then:
e Be A = BetAe A 4 [em, é]e’“& = B+ cxele ™ =B+ (4.21)

Note that e®Ae=74 = = 1, the identity operator, is valid for any scalar z and any
operator A. The snnplest way to see this is by noting that the operator A commutes
with itself and with all of its powers [A, Ak] = 0. So the expansion of the product
of exponentials erAe—cA proceeds essentially as for standard real numbers, as for all
terms the ordering of operators is unimportant. Then, exactly as for real numbers
we get that in the expansion of e*e~4 all powers of = have a vanishing coefficient
and the result is equal to 1 (the identity operator).

This can be verified using

m n+mAn+m k Ak

o) k mk?‘
e ZZ n!m! :Zxk:' Z (k —m)!m! (4.22)

n=0 m=0 k=0 m=0

where in the last expression we grouped terms with the same value of n+m. Using
that 3¢ _ (=1)"k!/((k —m)tm!) = (1 = 1)* for k > 1 and Y2 _ (—1)™k!/((k —

m)!m!) =1 for k = 0 we recover the result.
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Note however that eA Be—2A + B, a result which follows from the fact that A and
B do not commute.

Solution 2. A second solution can be derived by noting that

d i ; P oaa A A .
o (ewABe_wA> = " (AB — BA)e ™ = ce"e ™ = c. (4.23)
T

Integrating over time with the initial condition e"ABe="A = B at x = 0 shows that
e"Be™" = B + cx.

This second solution is closely analogue, from an algebraic point of view, to the
solution of Heisenberg equations of motion, which will be described in the course.
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