
Quantum Mechanics I
Week 2 (Solutions)

Spring Semester 2025

1 Matrix Diagonalization
Find the eigenvalues and the normalized eigenvectors of the following matrices.

The objective of this exercise is to determine the eigenvalues and eigenvectors of the
following square matrices. For a matrix A, the eigenvalues are obtained by solving the
characteristic equation

det(A− λ1) = 0 . (1.1)

Once this is achieved, we then determine the corresponding eigenvectors. For the
eigenvalues αi, we solve the equation

Avi = αivi , (1.2)

with the condition that the eigenvector vi must be normalized, i.e. v†i vi = 1. For a 2× 2
matrix, like A1, the above takes the form of(

1 0
0 −1

)(
xi

yi

)
= αi

(
xi

yi

)
, |x|2 + |y|2 = 1 , (1.3)

where (xi yi)
T corresponds to the eigenvector vi.

We provide the eigenvalues and normalized eigenvectors for the following matrices:

(a) A1 =

(
1 0
0 −1

)
The eigenvalues of A1 are equal to λ1 = 1 and λ2 = −1. The corresponding
eigenvectors are given by v1 =

(
1 0

)T and v2 =
(
0 1

)T .

(b) A2 =

(
0 1
1 0

)
The eigenvalues of A2 are equal to λ1 = 1 and λ2 = −1. The corresponding
eigenvectors are given by v1 =

1√
2

(
1 1

)T and v2 =
1√
2

(
1 −1

)T .

(c) A3 =

(
0 2i

−2i 2

)
The eigenvalues of A3 are equal to λ± = ±2. The corresponding eigenvectors are
given by v± = 1√

2

(
1 ∓i

)T .
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(d) A4 =
1√
2

0 1 0
1 0 1
0 1 0


The eigenvalues of A4 are equal to λ1 = 0, λ2 = +1, λ3 = −1. Their respective
eigenvectors are: v1 =

1√
2

(
−1 0 1

)T
, v2 =

1
2

(
1

√
2 1

)T
, v3 =

1
2

(
1 −

√
2 1

)T .

Remark: The following matrices share the form with physical observables that we
frequently encounter in quantum mechanics. Keep these examples in mind for the
future. Try to identify them during the course.

2 Hermitian Operators
In the lecture we have seen that Hermitian operators play an important role in quantum
mechanics, as they are associated with physical observables. In the following, you will
prove some important properties of these operators.

(a) Show that for two Hermitian operators we have that

(
ÂB̂
)†

= B̂†Â†. (2.1)

Hint: Consider the matrix elements of ÂB̂.

We consider the matrix elements of the matrix
(
ÂB̂
)†

, and the action of the
conjugate transpose operation on these elements:

LHS = ((AB)†)ij = ((AB)ji)
∗ .

Then, using the definition of the matrix-matrix multiplication (AB)ij =
∑

k AikBkj,
we may write:

LHS =

(∑
k

AjkBki

)∗

=
∑
k

B∗
kiA

∗
jk .

In the latter, we change the order of the matrix elements since they are simply
numbers. Using the property of the conjugate transpose operation, we write:

LHS =
∑
k

B∗
kiA

∗
jk =

∑
k

(B†)ik(A
†)kj = (B†A†)ij ,

where in the last equality we used the definition of the matrix-matrix multiplication.

(b) Show that the following operators are Hermitian:

Â†Â, ÂÂ†,
Â+ Â†

2
,

Â− Â†

2i
. (2.2)
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Using the result from Question (a) and (A†)† = A, we find:

(A†A)† = A†(A†)† = A†A ,

(AA†)† = (A†)†A† = A†A ,(
A+ A†

2

)†

=
A† + A

2
,

(
A− A†

2i

)†

=
A† − (A†)†

−2i
=

A− A†

2i
.

(c) Show that if Ĥ is Hermitian, then ÂĤÂ† and Â†ĤÂ are also Hermitian.

Using the relations from Question (b), we find:

(ÂĤÂ†)† = (ĤÂ†)†Â† = (Â†)†Ĥ†Â† = ÂĤÂ† ,

(Â†ĤÂ)† = (ĤÂ)†(Â†)† = Â†Ĥ†Â .

Using that Ĥ = Ĥ† we can conclude that both ÂĤÂ† and Â†ĤÂ are Hermitian.

(d) Show that any generic operator Ĉ can be expressed as a linear combination of two
Hermitian operators, R̂ and Î, as

Ĉ = R̂ + iÎ. (2.3)

Taking the adjoint of the general operator Ĉ, we find:

Ĉ† = R̂† − iÎ† = R̂− iÎ , (2.4)

since both R̂, Î are Hermitian operators. We may now express the operators R̂, Î in
terms of the generic operator Ĉ and its adjoint Ĉ† as follows:

R =
C + C†

2
, I =

C − C†

2i
. (2.5)

Using our results from Question (b), we verify that indeed R̂ and Î are Hermitian,
and thus it is possible to express any operator as Ĉ = R̂ + iÎ.
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3 Commutators
During this course, we will frequently encounter commutators of two operators, both
Hermitian and non-Hermitian. This information is vital towards solving a quantum
mechanical problem or identifying possible symmetries of a system.

Using the definition of the commutator of two operators [Â, B̂] ≡ ÂB̂− B̂Â, show that:

• [Â+ B̂, Ĉ] = [Â, Ĉ] + [B̂, Ĉ]

[Â+ B̂, Ĉ] = (Â+ B̂)Ĉ − Ĉ(Â+ B̂) = ÂĈ − ĈÂ+ B̂Ĉ − ĈB̂ = [Â, Ĉ] + [B̂, Ĉ]

• [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂

[AB,C] = ABC − CAB = ABC − ACB + ACB − CAB = A[B,C] + [A,C]B

• [λÂ, B̂] = λ[Â, B̂]

[λÂ, B̂] = λÂB̂ − B̂λÂ = λ(ÂB̂ − B̂Â) = λ[Â, B̂]

•
[
Â, [B̂, Ĉ]

]
+
[
B̂, [Ĉ, Â]

]
+
[
Ĉ, [Â, B̂]

]
= 0 (Jacobi identity)

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = A(BC − CB)− (BC − CB)A

+B(CA− AC)− (CA− AC)B

+ C(AB −BA)− (AB −BA)C = 0

where Â, B̂ and Ĉ are operators (matrices), and λ is a scalar.

4 Pauli Matrices Algebra
The Pauli matrices are complex matrices that arise in the treatment of spin in quantum
mechanics,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (4.1)

We will be using them frequently throughout this course, so it is essential to be comfortable
with them and to understand their properties.

(a) Show that the Pauli matrices are Hermitian.

A Hermitian matrix is a (complex) square matrix that is equal to its own conjugate
transpose. We need to show this for all Pauli matrices.

σ†
1 =

(
0 1
1 0

)
= σ1, σ†

2 =

(
0 −i
i 0

)
= σ2, σ†

3 =

(
1 0
0 −1

)
= σ3 .
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(b) Show that
σ2
1 = σ2

2 = σ2
3 = 1 , (4.2)

where 1 is the identity matrix.

This is trivially shown by taking the square of matrices:

σ2
1 =

(
0 1
1 0

)
·
(
0 1
1 0

)
=

(
1 0
0 1

)
= 1 , (4.3)

σ2
2 =

(
0 −i
i 0

)
·
(
0 −i
i 0

)
=

(
1 0
0 1

)
= 1 ,

σ2
3 =

(
1 0
0 −1

)
·
(
1 0
0 −1

)
=

(
1 0
0 1

)
= 1 .

(c) Show the following identity:

σiσj = 1δij + iϵijkσk, (4.4)

where the Levi-Civita tensor is defined as:

ϵijk =


1, (ijk) ∈ {(123), (231), (312)}
−1, (ijk) ∈ {(132), (213), (321)}
0, otherwise.

(4.5)

To show this result, we need to compute the product between Pauli matrices. We
have already shown that if we take the square of any Pauli matrix, we get the
identity matrix. The products between different Pauli matrices are:

σ1σ2 =

(
0 1
1 0

)
·
(
0 −i
i 0

)
=

(
i 0
0 −i

)
= iσ3

σ2σ3 =

(
0 −i
i 0

)
·
(
1 0
0 −1

)
=

(
0 i
i 0

)
= iσ1 ,

σ3σ1 =

(
1 0
0 −1

)
·
(
0 1
1 0

)
=

(
0 1
−1 0

)
= iσ2 .

We may also easily verify that σ2σ1 = −σ1σ2 = −iσ3, σ3σ2 = −σ2σ3 = −iσ1 and
σ1σ3 = −σ3σ1 = −iσ2. Collecting all the results from this Question, we prove that

σiσj = 1δij + iϵijkσk .
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(d) Using your result from Question (c), show that:

[σi, σj] = 2iϵijkσk. (4.6)

We expand the commutator as follows

[σi, σj] = σiσj − σjσi .

Using the result of Question (c), we find

[σi, σj] = 1δij + iϵijkσk − 1δji − iϵjikσk .

Using the fact that the Kronecker delta is symmetric under index exchange, δij = δji,
and that the Levi-Civita tensor is antisymmetric under the exchange of any pair of
indices, eg ϵijk = −ϵjik, we find

[σi, σj] =�
��1δij + iϵijkσk −�

��1δij + iϵijkσk = 2iϵijkσk .

(e) Using your results from Question (c), show that:

{σi, σj} = 2δij . (4.7)

We expand the anticommutator as follows

{σi, σj} = σiσj + σjσi .

Using the result of Question (c), we find

{σi, σj} = 1δij + iϵijkσk + 1δji + iϵjikσk .

Using the fact that the Kronecker delta is symmetric under index exchange, δij = δji,
and that the Levi-Civita tensor is antisymmetric under the exchange of any pair of
indices, eg ϵijk = −ϵjik, we find

{σi, σj} = 1δij +����iϵijkσk + 1δij −����iϵijkσk = 2δij .

(f) Show that for any two vectors a⃗ and b⃗, we have

(σ⃗ · a⃗)(σ⃗ · b⃗) = a⃗ · b⃗+ iσ⃗ · (⃗a× b⃗) , (4.8)

where σ⃗ = σ1x̂+ σ2ŷ + σ3ẑ.

Write the LHS in terms of the matrix elements:

LHS = (σ⃗ · a⃗)(σ⃗ · b⃗) = σiaiσjbj (4.9)

Rearrange and we find
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LHS = σiσjaibj = (1δij + iϵijkσk)aibj (4.10)

Using the properties of the delta function δijaibj = aibi and the definition of the
cross product (⃗a× b⃗)i = ϵijkajbk

LHS = σiσjaibj = aibi + iσk (⃗a× b⃗)k (4.11)

which proves the final result.

(g) Show that the eigenvalues, for a 2 × 2 Hermitian matrix σ with zero trace and
σ2 = 1, are ±1.

We consider a general matrix σ

σ =

(
σ11 σ12

σ21 σ22

)
.

For a Hermitian matrix σ, we must have real σ11, σ22 and σ12 = σ∗
21. The zero trace

of σ yields σ11 + σ22 = 0 ⇒ σ11 = −σ22. Using these results, the matrix form of σ
reads

σ =

(
α β
β∗ −α

)
,

where α = σ11 ∈ R and β = σ12 ∈ C. The remaining condition σ2 = 1 yields

|α|2 + |β|2 = 1 . (4.12)

Let us now proceed to the diagonalization of σ. The characteristic equation for the
eigenvalues λ is found

(−α− λ)(α− λ) = |β|2 ,

which simply reduces to λ2 = |α|2 + |β|2 = 1 (using Eq. (4.12)). From this final
result, we find the eigenvalues to be λ± = ±1.

As an alternative solution, we can note that any Hermitian matrix M such that its
square M2 is equal to the identity must have eigenvalues equal to +1 or −1, even
if the matrix is not 2 × 2 but lives in a space of higher dimension. Indeed, any
Hermitian matrix is diagonalizable and has real eigenvalues. If |v⟩ is an eigenvector
with eigenvalue λ then M |v⟩ = λ|v⟩ and M2|v⟩ = M(λ|v⟩) = λ2|v⟩ = |v⟩. This
implies λ2 = 1. Thus the eigenvalues are all either +1 or -1.

The trace of a Hermitian matrix is always equal to the sum of its eigenvalues. Thus
for a 2× 2 matrix with trace zero, the only possibility is that one eigenvalue is +1
and the other is −1.

(h) For each of the Pauli matrices, find its eigenvalues λ±
i and normalized eigenvectors∣∣v±i 〉, where i = 1, 2, 3.

All the Pauli matrices are 2×2 Hermitian matrices with zero trace and σ2 = 1. Thus,
using the result from the previous Question, their eigenvalues are λ±

i = ±1, i ∈
{1, 2, 3}. The eigenvectors are determined as usual:
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∣∣v+1 〉 = 1√
2

(
1
1

)
,
∣∣v−1 〉 = 1√

2

(
1
−1

)
(4.13)

∣∣v+2 〉 = 1√
2

(
1
i

)
,
∣∣v−2 〉 = 1√

2

(
1
−i

)
(4.14)

∣∣v+3 〉 = (10
)
,
∣∣v−3 〉 = (01

)
(4.15)

(i) The expectation value of a Hermitian matrix M with respect to (w.r.t.) a normalized
vector |v⟩ is defined as:

Mv = ⟨v|M |v⟩ (4.16)

Compute:

• The expectation value of σ3 w.r.t. its eigenvectors
∣∣v±3 〉.

• The expectation value of σ3 w.r.t. the eigenvectors of σ2,
∣∣v±2 〉.

• The expectation value of σ2 w.r.t. its eigenvectors of
∣∣v±2 〉.

The expectation value is computed in matrix form as follows:

Mv = ⟨v|M |v⟩ = (v∗1 v∗2 · · · )

M11 M22 · · ·
M21 M22 · · ·

...
... . . .


v1
v2
...


Thus, for the cases provided we find:

•
〈
v+3
∣∣σ3

∣∣v+3 〉 = 1,
〈
v−3
∣∣σ3

∣∣v−3 〉 = −1

•
〈
v+2
∣∣σ3

∣∣v+2 〉 = 0,
〈
v−2
∣∣σ3

∣∣v−2 〉 = 0

•
〈
v+2
∣∣σ2

∣∣v+2 〉 = 1,
〈
v−2
∣∣σ2

∣∣v−2 〉 = −1

(j) Later in the course, we will see the importance of the exponential of a matrix,
defined by the series:

eM ≡
∞∑
n=0

Mn

n!
(4.17)

To make yourself more familiar with this object, compute:

exp(iασ3), exp(iασ2) . (4.18)
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The exponential of a matrix is defined by its series. We compute eiασ3 :

eiασ3 =
∞∑
n=0

(iασ3)
n

n!
= 1 +

iασ3

1
− α2σ2

3

2!
− iα3σ2

3σ3

3!
+ · · · =

=
(
1− α2

2!
+ · · ·

)
1 + i

(
α− α3

3!

)
σ3 =

= cosα1 + i sinασ3 =

=

(
eiα 0
0 e−iα

)
.

In the first to second line, we used the property σ2
3 = 1, and from second to third

line, we used the Taylor expansions of the sine and cosine.

eiασ2 =
∞∑
n=0

(iασ2)
n

n!
= 1 +

iασ2

1
− α2σ2

2

2!
− iα3σ2

2σ2

3!
+ · · · =

=
(
1− α2

2!
+ · · ·

)
1 + i

(
α− α3

3!

)
σ2 =

= cosα1 + i sinασ2 =

=

(
cosα sinα
− sinα cosα

)
.

(k) Finally, we would like to understand how the exponential of a matrix acts on vectors.
Apply exp(iασ3) to

∣∣v+3 〉 and decompose the result into a linear combination of
∣∣v±3 〉.

That is, find the coefficients c± in the following expansion:

exp(iασ3)
∣∣v+3 〉 = c+

∣∣v+3 〉+ c−
∣∣v−3 〉 . (4.19)

Use the orthonormality of the eigenvectors for the above. Do the same with the
following:

• exp(iασ2) applied to
∣∣v+2 〉 and decomposed into

∣∣v±2 〉.
• exp(iασ3) applied to

∣∣v−3 〉 and decomposed into
∣∣v±3 〉.

• exp(iασ2) applied to
∣∣v−3 〉 and decomposed into

∣∣v±3 〉.
We use our result from the previous Question, in particular:

eiασ3 = cosα1 + i sinασ3, eiασ2 = cosα1 + i sinασ2 .

For the first case, we simply have:

eiασ2
∣∣v+2 〉 = cosα

∣∣v+2 〉+ i sinα
∣∣v+2 〉 = eiα

∣∣v+2 〉 .
Page 9 of 11



For the second case:

eiασ3
∣∣v−3 〉 = cosα

∣∣v−3 〉− i sinα
∣∣v−3 〉 = e−iα

∣∣v−3 〉 .
The third and final case requires the action of an operator on an eigenvector of a
different operator. Thus, we express the target vector in the basis of σ2:∣∣v−3 〉 = i√

2

[
−
∣∣v+2 〉+ ∣∣v−2 〉 ] .

Then, the action of eiασ2 can be carried out:

eiασ2
∣∣v−3 〉 = eiασ2

i√
2

[
−
∣∣v+2 〉+ ∣∣v−2 〉 ] = · · · = sinα

∣∣v+3 〉+ cosα
∣∣v−3 〉 ,

where in the last equality we returned back to the original basis of σ3. You may
verify that in all of the above cases, the resulting states remain normalized.

(l) Show that if Â and B̂ are two operators such that [Â, B̂] = c then exÂB̂e−xÂ =
B + cx.

The question can be solved by two different methods. Solution 1. First, note that if
[Â, B̂] = c, then [Â2, B̂] = Â[Â, B̂]+[Â, B̂]Â = 2cÂ, [Â3, B̂] = Â[Â2, B̂]+[Â, B̂]Â2 =
3cÂ2.. In general, the relation [Ân, B̂] = Â[Ân−1, B̂] + [Â, B̂]Ân−1 = Â[Ân−1, B̂] +
cÂn−1 can be used to prove by induction that [Ân, B̂] = ncÂn−1. Using this result
we can see that

[exÂ, B̂] =
∞∑
n=0

xn

n!
[Ân, B̂] =

∞∑
n=1

cnxnÂn−1

n!
=

∞∑
n=1

cxnÂn−1

(n− 1)!
= x

∞∑
n=1

cxn−1Ân−1

(n− 1)!
= cxexÂ .

(4.20)
Then:

exÂB̂e−xÂ = B̂exÂe−xÂ + [exÂ, B̂]e−xÂ = B̂ + cxexÂe−xÂ = B̂ + cx . (4.21)

Note that exÂe−xÂ = 1̂, the identity operator, is valid for any scalar x and any
operator Â. The simplest way to see this is by noting that the operator Â commutes
with itself and with all of its powers [Â, Âk] = 0. So the expansion of the product
of exponentials exÂe−xÂ proceeds essentially as for standard real numbers, as for all
terms the ordering of operators is unimportant. Then, exactly as for real numbers
we get that in the expansion of exÂe−xÂ all powers of x have a vanishing coefficient
and the result is equal to 1 (the identity operator).

This can be verified using

exÂe−xÂ =
∞∑
n=0

∞∑
m=0

(−1)mxn+mÂn+m

n!m!
=

∞∑
k=0

xkÂk

k!

k∑
m=0

(−1)mk!

(k −m)!m!
(4.22)

where in the last expression we grouped terms with the same value of n+m. Using
that

∑k
m=0(−1)mk!/((k − m)!m!) = (1 − 1)k for k ≥ 1 and

∑k
m=0(−1)mk!/((k −

m)!m!) = 1 for k = 0 we recover the result.

Page 10 of 11



Note however that exÂB̂e−xÂ ̸= B̂, a result which follows from the fact that Â and
B̂ do not commute.

Solution 2. A second solution can be derived by noting that

d

dx

(
exÂB̂e−xÂ

)
= exÂ(ÂB̂ − B̂Â)e−xÂ = cexÂe−xÂ = c . (4.23)

Integrating over time with the initial condition exÂB̂e−xÂ = B̂ at x = 0 shows that
exÂB̂e−xÂ = B̂ + cx.

This second solution is closely analogue, from an algebraic point of view, to the
solution of Heisenberg equations of motion, which will be described in the course.
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